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ABSTRACT. In this paper, we consider a class of fuzzy fractional impul-
sive dynamic equations on time scales of the form

Sgy) = p@)-y@)+ f(t,y(t)), t €[0,T],
y(o) = Yo,
y(tf) = yt;7)+I(t,yt)), i€{l,...,n}.

Using Krasnosel'skii and Sadovskii’s fixed point theorems, we investigated
and established the existence and uniqueness of solutions of this class of
equations.
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1. INTRODUCTION

Mathematical modeling of some phenomena becomes more realistic and suitable
by non-continuous dynamical equations, so, in this regard, it is necessary to consider
both continuous and discrete models for such problems. These equations can be
interpreted by idea of time scales, which was introduced for the first time in 1988 by
Stefan Hilger [1] (for more details see [2]). The time scales calculus is a unification of
the continuous and discrete analysis, which describes the difference and differential
equations together as well as allowing us to deal with combining equations of two
differential and difference equations simultaneously (See, for example, [2, 3, 4, 5]).
The theory of dynamic equations on time scales has many interesting applications
in control theory, mathematical economics, mathematical biology, engineering and
technology (See [2, 6, 7, 8, 9]). In some cases, there exists uncertainty, ambiguity or
vague factors in such problems, and fuzzy theory and interval analysis are powerful
tools for modeling these equations on time scales. In [10], authors introduced and
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considered the notions of delta derivative and delta integral to fuzzy valued functions
on time scales. These definitions may accurately describe fuzzy dynamic processes
where time may flow continuously and discretely at different stages in the model; in
other words, these concepts are useful in modeling fuzzy start-stop processes as seen
in [11], [12] and the references therein.

Shahidi and Khastan [13]introduced the concept of fractional derivative for fuzzy
functions on time scales. The presented fuzzy fractional derivative is a natural
extension of the generalized Hukuhara derivative. In this paper, our aim is to lies
within the investigation of the existence and uniqueness of solution for the class of
fuzzy fractional impulsive dynamic equation of the form

Sgy(t) = p(t)-y@)+ f(ty(t)), t €[0,T],
(1.1) y(0) = o,
y(tf) = y(t7) + It y(t)), i€ {1,...,n},

where y(tF) = lim. y(t), y(t;) =y(t;), i€ {1,...,n} and o € (0,1]
t—>t3
(G1): p: T —>R,p e R,y € F(R),
(G2): f eC(T x F(R)),
(G3): there exist positive functions ¢ and r, defined on [0, 7] such that

" t€[0,T)

max | |e,(t,0(s))|r(s)As < oo,
/
D@t f(t2), 177 f(ty)) < r(t)D(,y),
D~ f(t,9),0) < q(t) +r(t)D(y,0), t€ T, z,y€ F(R),

(G4): there exists a positive constant A such that D(I(¢,x), I(t,y)) < AD(z,y),
z,y € F(R), t €[0,77].
Here F(R) is the set of real fuzzy numbers, D(-,-) is the Hausdorff distance and
0 is the zero element of F(R). We investigate the problem (1.1) for existence and
uniqueness of the solutions. To the best of our knowledge, there is a gap in the
references for investigations of the equation (1.1).

The paper is organized as follows. In the next section, we give some auxiliary
results needed for the proof of the main results. In Section 3, we formulate and
prove the main results. A conclusion is made in Section 4. Throughout this work,
we assume a good knowledge on time scale calculus and fuzzy dynamic calculus on
time scales (for more details we refer the reader to the books [141] and [15]).

2. PRELIMINARIES

In this section, we will give some basic facts regarding the fuzzy fractional differ-
entiation and integration on time scales. The exposition follows the paper [13]. Let
T be a time scale with delta differentiation operator and forward jump operator o
and A, respectively.

2
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Definition 2.1 ([13]). Let f: T — F(R). We say that the fuzzy function f is fuzzy
fractional differentiable of order o at t, if there is an element §% f(t) € Rp such that
for any € > 0 there exists a d > 0 for which
(i) if f(t+h)on f(o(t)) and f(o(t)) ©n f(t — h) exist, for any h > 0 with
t—h,t+h e Ur(t,o), then we have
D((f(t+h)en flo)t ™, anft)(h— p1) e(h — p(t)),
D ((f(o(t) ©m f(t —h) ™85 f(t)(h + p(1))) e(h =+ p(t)).
(ii) if f(o(t)) ©p f(t+h and f(t —h) ©p f(o(t)) exist, for any h > 0 with
t—h,t+h e Ur(t,o), then we have
D ((f(o(t) ©m f(t+h) ¢, 85 f(t)(u(t) — h)) e(h — p(t)),
D ((f(t—h)en fo(t)t' ™, 85 f(t)(u(t) + h)) e(h =+ p(t)).
The number §% f(¢) is said to be the a-derivative of f at t. We say that f is a;-
differentiable at t if case 1 holds. In this case, we will write 0% f(¢)—differentiable.
We say that f is as-differentiable at t if the case 2 holds and we will write 677 f (t)—differentiable.

If AC TnN(0,00), we will say that f is a-differentiable on A, if it is a-differentiable
at any point of the set A.

INIA

<
<

Definition 2.2 ([16]). A function p : T — R is called regressive, provided 1 +
w(t)p(t) # 0,V t € T Where u(t) := o(t) — t (the grainness function) and the
k—operator T is given by
Tk: T\(p(supT),supT), if SUPTSOO
T, otherwise.

The next theorem shows that the «aj-derivative and «s-derivative are additive
operators in terms of the k—operator.

Theorem 2.3 ([14]). Let f,g: T — F(R) be a-differentiable at t € T" and A € R.
Then

(1) f4+9:T — F(R) is a-differentiable at t and
05 (f +9)(t) = 05 () + 071 9(t),
(2) A f: T — F(R) is a-differentiable at t and
S (X~ )(t) = A- 05 f(1).
Definition 2.4 ([16]). A function f : T — R is called rd-continuous, if it is con-

tinuous at all right-dense points in T and its left-sided limits exists at all left-dense
points in T.

In this article, we denote the set of all regressive and rd-continuous functions on
T to be fR.

Definition 2.5 ([17]). The exponential function e, on time scales for p € R is
defined by: for all s,t € T,

ep(t,s) = exp(/ Euir) (p(T))AT).

Where &,(z) is the cylinder transformation defined by &, (z) = +log(1 + zh).
3
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Definition 2.6 ([13]). Let f : T — F(R) be a regulated function and a,b € T,
a,b > 0. Then a fuzzy fractional integral (shortly a-integral), ¢t > 0, is defined by

/f(t)éi‘}t = /t“’1~f(t)6Ht and /bf(t)éj‘:,t = /btal-f(t)éHt.

a

Next we, present some basic properties of the a-integral as follows.

Theorem 2.7 ([13]). Let a,b,c € T, a,b,c > 0, A € R and f,g : T — F(R) be
rd-continuous. Then

—~
—_
~—

(f(t)+g(t)o%t = fbf(t)éﬁ}t + fbg(t)éj‘;t,

—
[\)
~—

b
A f@)dgt=N- [ f(t)o%t,

>

(3) fa-F(O058 = [A- F(0)55¢+ [ A- F8)552,
@ fa-fe

>

(t)6%t = 0.

B e R

Theorem 2.8 ([14]). Let f : T — F(R) be continuous and ¢ € F(R). Then

¢
(1) F(t) =c+ [N f(r)0%7,t € T, t > 0, is ay-differentiable and 6% F(t) = f(t),

a
¢
(2) Ft)=con [ f(1)éyT, t € T, t > 0, is as-differentiable and 6% F(t) =
—f(t). Here ©g denotes the H-difference (for more details see [15]).

Throughout this paper we will consider the case of a;-derivative and a;-integral.
To prove our main results, we will use the following fixed point theorems.

Theorem 2.9 (Krasnosel’skii Fixed Point Theorem). Let M be a closed convex
nonempty subset of a Banach space (B, || - 1|). Suppose that

(1) A: M — B is completely continuous,
(2) B: M — B is a contraction,
(3) z,y € M implies Az + By € M.

Then the map A+ B has a fized point in M.

Theorem 2.10 (Sadovskii’s Fixed Point Theorem). Let P be a condensing operator
on a Banach space X. If P(D) C D for a convex,closed and bounded set D of X,
then P has a fized point in D.

4
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3. MAJOR SECTION

Define
thy1 = T,
Jo = [0,t1],
J = (trotres1], ke{l,...,n},
PC = {y:[O,T]—>F(R), yeC(Jy), ),

y(t,) =y(ty), ke{l, ... ,n}},
PCt = {y:[0,7] = FR), yeC'(J), ke{l,...,n}}.
The set PC' is a Banach space endowed with the supremum norm

lull = _mac ol
€{0,.m}

where

[ullx, = sup D(u(t),0), k€ {0,...,n}.
teJy

For u,v € PC, when we write ||u — v|| we have in mind

Ju—vl|= max |ju—v,
n}

where
luw — v||x = sup D(u(t),v(t)), k € {0,...,n}.
teJy
Theorem 3.1. The functiony € PC* is a solution of the equation (1.1) if and only
if y € PC satisfies the following integral equation

t
51) y(t) = [ep(t,o(n) - f(r,y(7))0fT + ep(t,0) - o
. 0
+ > ep(titr)  I(tk, y(te))-
{k:tk<t}
Proof. Suppose y € PC! is a solution of the equation (1.1). Then for t € J,
we have
(3.2) ofy(t) = p(t)-y(t) + f(ty(1), t € Jo,

y(0) = vo.

For its solution, we have

y(t) = ep(t,0) - yo + / eyt 0(r)) - f(r.y(r)S3m, t € Jo
0
and

y(t1) = ep(t1,0) o + / ep(tr, () - (7, y(r))55m

o
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For t € Jy, we get the following IVP

Sau(t) = plt)-y(t) + Ft.y(®), te .,
WED) = enlt1,0) 0+ [ epltro(r)) - Fry(r)Sr
0

+1(t1,y(t1))-
For its solution we have the following representation.

t1

ep(t,t1) - <ep(t1, 0) - yo + / ep(t,o(r)) - f(r,y(7))dfT

0

y(t)

+I<t1,y<t1>>) + [ eltotn) - Srur)ss

ty

= y(t.0) 5o+ / ep(t, (1)) - F(ry(r)65T
0

et t) - Tt y(t) + / eplt,a(r)) - Fr.y(r)S5T

ty
t

= (1,0 5o+ / ep(t.0(7)) - f(ry(r))55T
0
+ep(t tr) - I(t1,y(t1))-

Continuing this integration by parts representation process, we get (3.1).
Suppose y € PC satisfies (3.1). Then for ¢t € Jy, we have

y(t) = ep(t,0) - yo + / ep(t,0(7)) - £ (r,y(7))0% .
0

We §%-differentiate the equation (3.3) and we find

oy(t) = (p(t)ep(t,0)) - yo + ep(a(t),a(t)) - f(£,y(t))

p(t) - / ep(t,0(7)) - f(ry(r))55T
0

= p(t)- ep(t70)-yo+/€p(t70(7))~f(T,y(T))52‘rT)
0

+f(t y(t)

)
= pt) - y(t) + Flty(D). t € Jo.
6
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Moreover, by equation (3.3), we find

y(tr) = ep(ty,0) yo+ fl ep(ty,o(r)) - f(r,y(1))ogT
(3.4 0

ep(tf, 0) - yo + bf ep(tf?U(T)) ) f(T,y(T))(S%T.

For t € Jy, we have

(3.5) y(t) = e(t,0) yo+f€p o(r)) - f(m,y(r))ogT
+ep(t,t1) - I(thy(t )

The last equation we d¢-differentiate and we arrive at
Sry(t) = p(t) - (ep (t 0) - yo) +ep(a(t),a(t) - f(t,y(t))
ep(t (7, y(7))0FT
0
+p(t ) (ep(t,t1) - (tl,y(tl)))
We put ¢ = t] into (3.5) and using (3.4), we obtain

+
ty

y(th) = ep(tF,0) yo + / ep(tF,o(r)) - F(r,y(r)65iT
0
+I(t1,y(t1))

= y(ty) +1(t,y(t1)).

Substitution and differentiating again, we have y € PC! and it satisfies
(1.1). This completes the proof.
O

Next, we define self transformations P, @ and R on PC' as follows;

Py(t) = / ep(t,0(7)) - F(ry ()55,

Qut) = ep(t,0)-yo+ Y ep(titn) - I(tr,y(t)),
{k:tp <t}
Ry(t) = Py(t)+Qy(t), t €[0,T].

Lemma 3.2. Suppose (G1) — (G3). Then P : PC — PC is completely continuous.
7
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Proof. Note that P : PC' — PC. Take y € PC arbitrarily. Then applying (G3), we

arrive at

D(Py(t),0)

IN

IN

<

<

D ( [ entt.oto)- sirym)sn 6)

[letonipe" - s(ry(r).Dar

0

[leatt.o @)l (a() +r(nD(w(r).0)) Ar
0

[leatt.omlamar + [ ley(t.otr)irnDly(r). DA
0 0

£+ ( / |ep<t7o—<7>>|r<7>m) vl

E+nllyll, t€]0,77].

Thus we find ||Py[| <&+ nlly]-
Let {yn }nen C PC be such that

Yn — Y, as mn — o9,

where y € PC. Then we have: for ¢ € [0,T],

D(Pyn(t), Py(t))

t

=D(fep(t,a(f))-f(f,yn(f))5 Jentio) - 16 <>>6sz;r)

—D(j (ro=ley (1, 0(r)) - F(ra(r Of( <T>>)-f<ny<7>>am)
sgﬂ (6 o (P) D F(7, (7)), 7oL - f( (7)) Ar
< Of| (6,0 (P)IF(7) D(ya (7). y(r) Ar
< (g ep(t,o(r)lr(r >Ar) v — vl
<nllyn —yll
and

| Pyn — Pyll < nllyn — yll-
8
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Thus P : PC — PC is continuous. Now, we take y € PC arbitrarily and ¢;,ts €
[0,T]. Without loss of generality, suppose that ¢; < t2. Then

to

D(Py(t), Py(tr)) = D( [ enttzoo) - s
0

t1

O/ ep(t,0(r)) - 1)

ty

_ D( O/ (et (7)) — en(tr, (7)) - £(ry(7))5% 7,

[ enttaotry- f(mym)a,%)
= D( [ Gt epttanotr) — epltn. o) - Sy
0

[2)

[ e eyttzor) - syt

< Jepltat) — 1| / lep(tr, (D)D" - f(ry(r)),0) A
0
/ lep(ta, o(T)| DL - (7, 4(r)), D) Ar
— 0, as t; —to.

Now, using the Arzela-Ascoli theorem, we conclude that P : PC — PC' is completely
continuous. This completes the proof. O

Lemma 3.3. Suppose that (G1)-(G4) hold. Let also,

3.6 A= (t,tr)] < 1.
(3.6) tgfg‘x]Z‘ep K<<

Then @ : PC — PC' is a contraction.
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Proof. Note that e,(t,tx), k € {1,...,n}, is a continuous function. Then @ : PC —
PC'. Let now, y, z € PC be arbitrarily chosen. Then we have

D(Qu(1), Qx(1) = D(epto ot Y epltte) I y(te)

{k‘ tk<t}

»(t,0) - yo + Z p(tste) - tk%@k)))

{k: tr <t}

= D[ > elttr) Iteyt), > epltite)  I(te, z(t))

{k:ti <t} {k:tr<t}

Do lep(t te)I DUt y(t), I (th, (1))

{kiti <t}

AN Jep(t tn)|D(y(te), 2(t))

{kiti <t}

< A DY et t)llly -zl
{k:t <t}

< Cly—=zll, telo,T],

IA

IN

where |Qy — Qz|| < {|ly — z||. Then @ : PC — PC'is a contraction. This completes
the proof. O

Theorem 3.4. Assume that v = II%SELX Z lep(t, ti)| D(I(tr,0),0) < co. Let (G1)-
te[0,T] =1

(G4) and (3.6) hold. Let also, &,v,m, A and S be positive numbers satisfying the
inequality

3.7 t,0)|D(yo,0) + S A tte)] | <5
(B7) &+ max [ep(t,0)D(yo, 0) + <n+ +t§g§]§l%(’k>|>—

Then the equation (1.1) has a solution y such that ||y|| < S.

Proof. Define the set C = {y € PC : ||y|| < S}. By Lemma 3.2, it follows that P :
PC — PC'is completely continuous. By Lemma 3.3, it follows that @ : PC — PC
is a contraction. Now let y, z € C be arbitrarily chosen. Then |ly|| < S, ||z]| < S
and

D(Py(t) +Q(2).0)
=D fentio(e)) - £s. (6D + 3 tt0) 10 (1)) + 00) 3.0

(52 ep (t,0(5))) (5, 0()B1rs + 3 epltstr) - I(ths 2(t6) + €p(£,0) - o, 1]

=
Mﬁ

(so‘*lep(t,o'(s))) -f(s,y(s))éHs,a] + D( Zn: ep(t, tx) -I(tk,z(tk)),6>

0 k=1
+D (ep(t, 0) - yo,ﬁ)
10
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< j|ep<tvo—<s>>D<sa—1 P95, 0)85 4 3% fey (1 44) DUt 2(1)).0)
+lea(:0)[ Do, D)
< f|ep LoD Fs,(5).0)8s + 3 fep(t ) (DUt 2(11)) 1 (14,0)
D(I(t4,0),0)) + ley (1,0)| D(yo, 0)
< f eyt (51| (a(s) + () D(s),0)) s+ 32 feylt, )| DI (1 2(0). 1(8,0))

35 feplt, 0 DU (01,0.0) + (.0 Dl 0
< &-4ly] + A 3 e 0)|D(=(08).0) +9 + ley(1.0)|D(oos )
<6494 05 e 010000 + (4 5 le i) 5
=6yt 01000, D)+ 5 (144 35 |ep<t7tk>|)

<&+7+ max ley(t, 01Dy, 0)+5 (77+A max, Z len(t, fk)|)

tel0,T
<S8, tel0,T.
Thus
1Py + Q= <8, te[0,T],
ie.,, Py+4+ Qz € C. So the Krasnosel’skii fixed point theorem, it follows that the

operator P 4+ @ has a fixed point in C'. Now, using Theorem 3.1, we conclude that
the equation (1.1) has a solution in the set C'. This completes the proof. O

Theorem 3.5. Assume (G1)-(G4), (3.6), (3.7), Theorem 3.7 and n+ ¢ < 1. Then
the equation (1.1) has a unique solution.

Proof. By Theorem 3.4, it follows that the equation (1.1) has at least one solution
in the set C. Suppose that the equation (1.1) has two solutions y and z. Then

D(Ry(t)7 Rz(t)) = D(jep(tﬂ U(T)) ) f(Tay(T))(S%IT + ep(tv 0) - yo

+ 2 ep(titr) - I(tr, y(te)),
{k:tk<t}

jep@, o(7)) - Fr, =P85 + ep(t,0) - 3o
+ > ep(t,tk)-f(thz(tk)))

{k:tk<t}

—D(jepoza(r))~f<r,y<r>>5;:;r+ S epttn) - It y(te)),

{k:ty <t}

O —

ep(t.o(m) fr 2 )G+ % epltiti) - I(th, z(tk»)

{k::tk <t}

=D ( Oft ep(t,o (7)) (f(r,y(7)) ©m f(r,2(7)))04T,
11
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S epltatn) - (I(tn2(tr)) O I<tk,y<tk>>>)

{k:ti <t}

< D(J‘epu, o(r)) - ((r.y()) S f(r, z<7>>>6;:;r,6)
+D( S epltste) - (It y(te)) S I(ts, z(tk»),ﬁ)

{k:ty <t}

- D(f"ep@, o (1) F(r g5, [ eyt o(r)) - F(r, z(¢))5%7>
0 0
+D( S ep(tt) Iy(tn), X ep<t,tk>-f<tk,z<tk>>)

k:tk<t} {k‘:tk<t}

{
Of(Taflep(taU(T))) J(r,y(7))0uT,
To‘*lep(t,a(T))) -f(T,z(T))5H7>
+D| > ep(tity) I(te,y(te)), > ep(tity) 'I(tkvz(tk))>

{k:t, <t} {k:tp <t}

< [lep(t,a(@)ID(ro~t - f(r,y(7), 7071 f(7,2(7))) AT

+ {IMZQ} lep(t, te) |[D((tr, y(tr)), I (tr, 2(tx)))

lep(t, o (7)) |r(T) D(y(7), 2(7)) AT

+A Y lep(t, )| D(y(tr), 2(tx))
{k:ti <t}

<nlly — 2l + Clly — =|l

=M+ Qly -zl

< ”y_ZHv tG[O,T].
Thus ||y — z|| = || Ry — Rz|| < ||y — z||, which is a contradiction. This completes the
proof. O

o o

<

o &

Suppose
(G5): There exist an increasing functions ¢ : R. — Ry such that

D(Ik(tkay(tk))vo) < lk(D(y(tk)vo))7 ke {07 cee ,TL},
and lim L0 —o, ke{o,...,n}
T—00
(G6): For each r > 0 there exists a continuous function h, : [0,7] — (0, c0)

such that

D> Y- f(t,y),0) < hy(t) for each (t,y) € [0,T] x F(R), D(y,0) <,
T
and liminf, o + [ hy(s)As = 1 < oo.
0

Theorem 3.6. Suppose (G1), (G2), (G4)—~(G6) and
(3.8) ]|€p(t,0’(7))| <1
12

a;

1 max
(t,7)€l0,T]x[0,T
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Then the equation (1.1) has at least one solution.

Proof. We shall proof this theorem in three phases or cases. Let R : PC — PC.
Case I : We will prove that R is continuous. Let {y,}men be a sequence of
elements of PC such that y,,, =y, asm — oo, y € PC. Then

D(lzym(t), Ry(t))
= D[{%(M(T)) (T ym(7))0% T + ep(t,0) - yo

+ 2 %(t,tk)~I(tk,ym(tk))jep(t,cf(f))~f(T,y(T))5%T

{kity <t}

+ep(t,0) - yo + {k‘Z }ep(tatk) (g, y(ty))]

- D(f‘ep@, o(1)) - F(roym (1) 05y
0 t
# S el Kt fetto) - Syt

+ % ep(t,tk)'f(tkay(tk))>

{k::tk- <t}

) ( f ep(t, (7)) - (F(7,ym(7)) S £ (ry(r)))F5,
S epltaty) - (It y(te)) o I(tk,ymosk))))

{kiti <t}

< D(f‘epu, o(7)) - (F(rsym () E1 f<r,y<f>>>6;fn,6)
+D( S et ti) - (Lltnym(t0) O f(tk,ym))),ﬁ)

{k:tp <t}

D(f"ep (ot (7557, [ et (7)) - f<ny<7>>6%n)
0 0
+D( ot te) Itk ym(t)), > ep(tatk)'l<tk,y(tk)))
t ktk<t} {k:tk<:}
o] M) - e )onm. (et o) 'fmm)aw)
+D( St) It ym(t), S ep@?tk)-I(tk,y(tm)
t (k: tk<t} {kitr<t}
< [lento(PDIDG - 77,7 - )

+{k.2 }|ep(tvtk)|D( (ke Y (tk)), It y (k)

IN

t
(t,m)e H}l%}]{ x[0,7] len(t, UD (T f(Tym (7)), 771 f(T,y(7) AT

+A Y max |ep(t tk)|D(ym(tk) y(tg)) >0, as m—oo, te€0,7T]
{kitp <t} te[0,T]
Thus ||Rym — Ry|| = 0as m — oo.
13
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Case II : For each constant r > 0, denote B, = {y € PC : ||y|| < r}. Note that
B, is a bounded, closed and convex set in PC. We will prove that there exists a
number r > 0 such that R(B,) C B,. Suppose the contrary, i.e., for each r > 0
there exists a function y, € B, such that D(R(y,(t)),0) > for some t e [0,T].
Then

r< D(R(ty,,(t)),ﬁ)
= D<{ep(t’0(7)) (T ye(7)05 T 4 ep(£,0) - yo
+ ¥ ep<t7tk>-f<tk7yr(tk>>76)

{kst <t}

< D<fe,,(t,a(7‘)) - f(r, yr(T))(S?IT,a) + D(ep(t,0) - yo,a)
(S et Tonn().0)
{k:

+ 2 lep(t,te)| DI (te, yr (1)), 0)

{k:t <t}
< max, lep(t,0)[D(yo. 0) +g"|ep(t,0(7))|D(T“‘1-f(ﬁyr(f)),ﬁ)AT
+ X eyt te) DUty yr (1)), 0)
{k:t <t}

t

< t,0)|D t hr(s)A
s (e (G OID(.0) + e ey (1o (r)] [ hr(s)As

+ T max et ol (P(t).0)
< D(yo,0
< tg}%lep(t,o)l (40 0)
t
max lep(t,a(T))| [ he(s)As+ > max |ey(t, t)|lk (7).

(t,7)€[0,T]x[0,T] 0 {k:te<t} t€[0,T
Thus o)
1 t,0)]2ee-0)
< nax lex(t,0)]
t
1
(tr)e][[(r)l%)fx[oﬂ‘ pltso ()‘Tof r(5)As
r)

+ > max |ey(t, tk)|
{k: tk<t}t€[0 T) P

and taking limits as r — oo, we find

14
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< . D(y0,0)
ls trel%gj)’l(“] |6p(t’ 0)| rlglc}o r
l h.(s)As

ep(t,o(r))] lim 1

L (r)

o &

max
(t,7)€[0,T]x[0,T]
+ max |e,(t, )| lim
{k:§<t} t€[0,T7] ‘ p( )l r—o0
= max e t7 olT ,
& (W)G[O,T]X[O,TH p(t;o(7))]
which is a contradiction to our assumption and consequently, 3 r; > 0 such that
R(BTl) g B"'l'
Case III : Here, we are to show that R(B,,) is an equi-continuous family of

functions. To this end, Let t*,¢?> € [0,T] be arbitrarily chosen. Without loss of
generality, suppose ¢! < t2. Then

D(ff(y)(tz), R(y)(t"))
- D[{ e, (t2,0(7)) - F(r,y(1))8%T + e, (2,0) - o

+ {k_t2<t2} ep(t®, tr) - I(tr, y(tx)), 2’ ep(t', o (1)) f (1, y(7))ogT
+ep(t",0) - yo +{ > }%(tl,tk) (e, y(te))]
kit <t!
= D(g (ep(t?,0(7)) = ep(t',0(7))) - f(1,y(7))0%T
+ Z‘ ep(t27(7(7—)) ’ f(77y(7—))5%7 + (ep(t270) - ep(t170)) *Yo
+ 2 (ep(Bte) —ep(thtr) It y(te)+ 2 ep(tz,tk)-f(tmy(tk)),ﬁ)
{k:tr<t'} {k:t' <tp <t}

< D(;f (Tt (ep (2, 0(7)) — ep(t!,0(7)))) - f(Tay(T))5H7a6>

+D[t{ ep(t2,0(7)) - f(7,y(7))557,0]
+D ((ep(tQ,O) - ep<t170)) 'y076) +D ({k.z - (ep(t27tk) - ep(t17tk)) 'I(tkyy(tk))a6>

+D( S et -I(tk,yosk)),ﬁ)
1 {kt! <t <t2}
< [ len(t%.0(7)) = (" (rD)] DT~ - (roa(r), D)sr

+‘t{ |ep(t27(7(7—))| D(f(r, y(T))va)AT + |e,’0(t270) - ep(tlvo)’ D(y076)

Foode [0 m) — e ) DI y@) 0+ 5 fen(t® )] DT y(01)), 0)

15
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—0, as t!—t2
From this and the Arzela-Ascoli theorem, we conclude that R : PC — PC is com-
pletely continuous and it is condensing. Thus, Sadovskii’s fixed point theorem, it
follows that R has a fixed point in PC', which is a solution of the equation (1.1). O

Theorem 3.7. Suppose (G1), (G2), (G4), (G6), (3.6) and A= 5, max |ey(t,tr)| <
{k:t <t} tE[0.T]
1. Then the equation (1.1) has at least one solution.

Proof. As we have proved in Theorem 3.6, there exists a positive number 7 such that
R(B,) C B, and the operator @ is a compact operator on B,.. Let now, y,z € PC.
Then

D< Z p(ttk) - It y(te), ep(t,tk).f(tk,z(tk))>

{k:tk <t}

Z |€p(f,tk)|D([(tk7y(tk))J(tk,Z(tk)))
{(k:tr<t}
<A Y e lep(t, te) [ D(y(tr), 2(tk))

{k? tr <t} 6[0

IN

<A Y max, lep(t, t)llly — 2|, t€[0,T).

{kitp <t}
Thus
| Py — Pl
<A N max, lep(t, te)llly — 2|l < lly — =||.

(oitnst) tel0,T

Consequently R = P + @ is a condensing operator on B,.. So by the Krasnosel’skii
fixed point theorem, it follows that the equation (1.1) has a solution in PC'. This
completes the proof. O

4. CONCLUSIONS

The authors [13] introduced a new concept for fuzzy fractional differentiation and
integration on time scales. Using this concept, we investigated a class of fuzzy frac-
tional impulsive dynamic equations on arbitrary time scales. We establish existence
and uniqueness of the solutions of the considered equations using the Krasnosel’skii
and Sadovskii fixed point theorem. In our future study, stability of solutions using
fixed point techniques will be investigated, leading to the understanding of pertur-
bation effects on the solutions, which is essential for ill-posed problems.
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